An iterated local search algorithm for learning Bayesian networks with restarts based on conditional independence tests
نویسندگان
چکیده
A common approach for learning Bayesian networks (BNs) from data is based on the use of a scoring metric to evaluate the fitness of any given candidate network to the data and a method to explore the search space, which usually is the set of directed acyclic graphs (DAGs). The most efficient search methods used in this context are greedy hill climbing, either deterministic or stochastic. One of these methods that has been applied with some success is hill climbing with random restart. In this article we study a new algorithm of this type to restart a local search when it is trapped at a local optimum. It uses problem-specific knowledge about BNs and the information provided by the database itself (by testing the conditional independencies, which are true in the current solution of the search process). We also study a new definition of neighborhood for the space of DAGs by using the classical operators of arc addition and arc deletion together with a new operator for arc reversal. The proposed methods are empirically tested using two different domains: ALARM and INSURANCE. © 2003 Wiley Periodicals, Inc.
منابع مشابه
A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملBayesian and Decision Models in AI 2010-2011 Assignment II – Learning Bayesian Networks
The purpose of this assignment is to test and possibly expand your knowledge about learning Bayesian networks from data. Recall that learning Bayesian networks involves both structure learning, i.e., learning the graph topology from data, and parameter learning, i.e., learning the actual, local probability distributions from data. There are basically two approaches to structure learning: (i) se...
متن کاملIterated Local Search Algorithm for the Constrained Two-Dimensional Non-Guillotine Cutting Problem
An Iterated Local Search method for the constrained two-dimensional non-guillotine cutting problem is presented. This problem consists in cutting pieces from a large stock rectangle to maximize the total value of pieces cut. In this problem, we take into account restrictions on the number of pieces of each size required to be cut. It can be classified as 2D-SLOPP (two dimensional single large o...
متن کاملEfficient Structure Learning and Sampling of Bayesian Networks
Bayesian networks are probabilistic graphical models widely employed to understand dependencies in high dimensional data, and even to facilitate causal discovery. Learning the underlying network structure, which is encoded as a directed acyclic graph (DAG) is highly challenging mainly due to the vast number of possible networks. Efforts have focussed on two fronts: constraint based methods that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Int. J. Intell. Syst.
دوره 18 شماره
صفحات -
تاریخ انتشار 2003